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ABSTRACT: We report an experimental enhancement of the magnetic
susceptibility of suspensions of particles that is related to the spatial
distribution of the magnetic phase in the particles. At low field, the
susceptibility of suspensions of nickel-coated diamagnetic spheres was
approximately 75% higher than that of suspensions of solid nickel spheres
with the same nickel content. This result was corroborated by magneto-
statics theory and simulation. The distribution of the magnetic phase in a
shell also led to an improvement of the field-induced rheological response
of the suspensions.

KEYWORDS: magnetic susceptibility, magnetic particles, colloids, rheology, magnetorheological fluids

1. INTRODUCTION

Tailoring the fundamental properties of matter has become a
real possibility in recent decades thanks to the progress in
nanotechnology and materials science and engineering.
Actually, many synthetic materials with user-tunable properties
have already been successfully commercialized.1−4 Among the
wide range of properties that can be easily manipulated, those
related to magnetism have turned out to be powerful tools in
many technological and biomedical applications.5 For example,
the sensitivity and efficiency of biosensors made of magnetic
nanoparticles are improved by increasing the saturation
magnetization of the nanoparticles.6 Remanence and coerci-
tivity of magnetic nanoparticles used for hyperthermia
applications can be tailored so that tissue heating is dominated
by either relaxation processes (i.e., Neél or Brownian) or by
hysteresis losses.7,8 An increase of the saturation magnetization
of magnetic particles used as contrast agents in magnetic
resonance imaging (MRI) also leads to higher effectiveness.9−11

Similarly, an enhanced contrast in MRI applications can be
achieved by increasing the magnetic susceptibility, χ, of the
magnetic particles because of the shortening effect of the spin−
spin relaxation time.12,13

In addition to MRI, there are many other fields in which
changes of χ are of practical interest: geophysics (e.g.,
paleomagnetism and environmental magnetism), chemistry,
and physics (e.g., analytical chemistry, magnetic measurements,
or magnetic field-responsive materials).14−16 As a matter of fact,
many of these magnetic field-responsive materials (e.g., field-

responsive fluids, foams, elastomers, or gels) are built by
incorporating colloidal ferromagnetic particles to a diamagnetic
matrix. The magnetic susceptibility of the dispersed particles
and thus the response to the field of the material depends
mainly on their composition (i.e., pure metals or ferrites) and
on particle size (i.e., nano- vs micrometer). For example,
ferrofluids based on magnetite nanoparticles of relatively low χ
display small changes of viscosity when a magnetic field is
applied.16,17 However, magnetic fluids of iron microparticles of
high χ, also known as magnetorheological fluids, exhibit a much
stronger change in their rheological (flow) properties in the
presence of a field.16 Traditionally, the combination of different
materials and/or sizes has offered a variety of responses to the
applied magnetic field.
In this work, we report a novel approach to enhance the

magnetic susceptibility of particulate suspensions based on the
optimization of the spatial distribution of the magnetic material.
In particular, we demonstrate, both experimental and
theoretically, that the magnetic susceptibility of a suspension
of hollow magnetic spheres (i.e., diamagnetic core−ferromag-
netic shell particles) is enhanced in comparison to that of a
suspension of solid ferromagnetic spheres with the same total
amount of magnetic material. Such an improvement is expected
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to play a significant role on the magnetic field-induced rheology
of the suspensions, which is also studied.

2. EXPERIMENTAL SECTION
We prepared two suspensions consisting of (i) solid nickel spheres,
average particle diameter (a.p.d.) of 10 μm (Merck KgaA, Germany),
and (ii) nickel-coated hollow ceramic spheres with an a.p.d. of 12 μm
(Accumet Materials Co, USA) dispersed in mineral oil (Sigma-Aldrich,
USA) and stabilized by the addition of oleic acid (Sigma-Aldrich,
USA). The total particle volume fraction of (ii) was approximately 40
vol %. The total particle volume fraction of (i) was adjusted so that
both suspensions had the same amount of magnetic material (i.e., pure
nickel). With this aim, we measured the magnetization, M, of the
prepared suspensions as a function of the magnetic field, H, using a
SQUID Quantum Design MPMS XL magnetometer. Then, we
verified that both suspensions had the same saturation magnetization,
which turned out to be Ms = 1.5 kA m−1, as shown in Figure 1. From
this value, we calculated the volume fraction of pure nickel by taking
into account the saturation magnetization of bulk nickel Ms =480 kA
m−1.14 By doing so, we obtained a volume fraction of pure nickel of 0.3
vol % for both suspensions.
We characterized the rheological behavior upon magnetic field

application of both suspensions by means of a rheometer (Thermo
Haake RS 150). For this purpose, we used a parallel plate set
specifically adapted to apply magnetic fields in the direction parallel to
the axis of the rheometer (i.e., along the velocity gradient). The
rheological measurements were conducted at 25, 60, and 85 °C.

3. RESULTS AND DISCUSSION
Both suspensions, consisting of solid nickel and nickel-coated
spheres, had the same saturation magnetization and thus the
same content of pure nickel. In spite of this, we found
important differences between the magnetization curves of the
two samples, as shown in Figure 1. As expected for suspensions

of ferromagnetic particles, both curves at first showed a strong
increase of M at low fields (approximately H < 200 kA m−1)
followed by a smoother one until Ms was reached. Such a
saturation (i.e., variation of M of less than 1%) appeared at
lower fields for the solid-nickel suspension, H ∼ 240 kA m−1,
than for the nickel-coated one, H ∼ 320 kA m−1, as seen in
Figure 1. Additionally, there were evident quantitative differ-
ences of susceptibility, χ = M/H, for both suspensions in the

region of low H: the slope of the curve for the nickel-coated
suspension was significantly higher than the one for solid-nickel
particles. Indeed, the calculation of χ in this range of fields
revealed that such a difference of susceptibility was as big as
∼0.03 (i.e., 75%) at the beginning of the curve (inset of Figure
1). Finally, at increasing fields, χ decreased for both suspensions
until similar values were reached at the highest fields. However,
it was the great increase of χ at the lowest fields that indicated
that a simple redistribution of the magnetic material into a
spherical shell led to a great enhancement of the magnetization
degree of the suspension.
Let us now give a theoretical explanation for the

experimentally observed trends by calculating the magnetic
susceptibility of both suspensions. With this aim, we first
considered a dilute suspension of noninteracting, nonaggre-
gated identical spheres of diamagnetic core (χc ≈ 0) and
magnetic shell (χs > 0) dispersed in a diamagnetic matrix (χm ≈
0) and subjected to an external uniform field in the vertical

direction
⎯ →⎯⎯⎯⎯
H0 = H0z.̂ The radii of the core and outer surface of

the shell were rc and rs, respectively, related by the parameter p

= (rc/rs)
3. The average magnetization of the suspension ⟨
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M ⟩,

which is due only to the magnetic shell, was calculated as
follows

∭ ∭

∭χ

⟨ ⃗ ⟩ = ⃗ = ⃗

= ⃗

M
V

M V
N

V
M V

N

V
H V

1
d d

d

V V

V

p
shell shell

p s
shell

shell

shell (1)

In this equation, V is the suspension volume and Np is the
number of composite particles in the suspension. For
simplification, we supposed in eq 1 that for each given value
of the applied magnetic field the susceptibility was constant
along the volume of the shell (i.e., its value did not change for
the variations of the magnetic field within the shell). Otherwise
it was not possible to solve eq 1 analytically. Note, however,
that this approximation does not mean that the magnetic
material was considered to be linear because, as will be shown,
the calculated susceptibility depended on the intensity of the

magnetic field. The magnetic field was replaced by
⎯ →⎯⎯
H = −∇Ψs,

with Ψs being the magnetostatic potential in the shell
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The shell potential was determined by using standard
magnetostatics18−20
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Where θ and r are the polar angle and the radial position in
spherical coordinates, respectively, and A and B are constants
determined by taking into account appropriate boundary
conditions18−20
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Figure 1. Experimental initial magnetization curves for both samples
(i.e., consisting of solid nickel and nickel-coated spheres). The inset
shows the magnetic susceptibility calculated from magnetization
curves. The magnetic susceptibility was much higher for the nickel-
coated suspension at low field in spite of having the same saturation
magnetization (i.e., the same nickel content).
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Where βs = (1 − μs)/(1 + 2μs) and μs is the magnetic
permeability of the shell (i.e. nickel), related to the magnetic
susceptibility by μs = χs + 1.
The integral term in eq 2 was solved across the outer and the

inner surfaces of the shell. Because the magnetic field was
directed just along the z axis and the shell was considered to be
an isotropic magnetic material, the magnetization vector had
only one component, which turned out to be

χ
π⟨ ⟩ = −M

N
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r H A p

4
3
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p s
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3
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Note that φ = (Np/V)(4/3)πrs
3 is the particle volume fraction

of the suspension, whereas the term in brackets in eq 6 is the
volume fraction of the shell in the whole composite particle. As
a result, the volume fraction of magnetizable material in the
suspension is given by φmag = φ(1 − p). The susceptibility of
the whole suspension was calculated as

χ χ φ=
⟨ ⟩

=
M
H

Az
susp

0
s mag

(7)

Finally, we substituted A by eq 4 and introduced the
magnetic contrast factor β = (μs − 1)/(μs + 2) for the
suspension of nickel-coated particles to obtain

χ φ β
ββ

=
+ p

3
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s (8)

In the case of solid magnetic particles of radius r dispersed in
the same diamagnetic matrix, the mean magnetization of the
suspension was calculated by considering the magnetic moment

of each particle
⎯→⎯
m
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Where, again, we supposed a system of noninteracting
spheres. Because φmag = (Np/V)(4/3)πr

3 in this second case,
the magnetic susceptibility of the suspension of solid-nickel
particles turned out to be

χ φ β= 3susp mag (10)

A comparison between eqs 8 and 10 revealed that the
magnetic susceptibility of a suspension of hollow magnetic
spheres should be enhanced with respect to the one of solid
magnetic spheres for the same volume fraction of magnetic
material, φmag, because βs < 0 in eq 8. Actually, for concentrated
suspensions of high-permeability particles, such a comparison is
even more evident. If μs ≫ 1, then β ≈ 1 and βs ≈ −1/2, and
the magnetic susceptibility of the suspension of hollow particles
is larger than the one of the suspension of solid particles by a
factor of φ/φmag.
Using eqs 8 and 10, we calculated the susceptibility of both

suspensions. For this purpose, the values of μs as a function of
H for pure nickel were obtained from the materials library of
FEMM software.21 The theoretical curves followed the same
tendency as the experimental results, that is, the susceptibility
was higher for the suspension of nickel-coated particles (Figure
2). Actually, the theoretical difference between both samples
was much higher than the experimental one. In particular, the
calculated values of χ for the nickel-coated suspension were

slightly higher than the experimental data, especially at the
lowest fields, whereas in the case of the solid-nickel suspension,
the situation was the opposite (i.e., the theory strongly
underestimated χ). However, despite these quantitative differ-
ences, the trends were identical, and, consequently, basic
magnetostatics explained the enhancement of susceptibility
(Figure 2).
The discrepancies between experiments and theoretical

calculations in Figure 2 are likely due to the approximation
of noninteracting and nonaggregated particles. Note that other
phenomena, such as interparticle magnetic correlation and
chain formation, which are known to play a significant role in
the case of ferrofluids,22−24 should be ruled out in the present
case because of the non-Brownian nature of the particles under
study. In addition, the approximation made in eq 1 that the
susceptibility of the magnetic material was constant along the
particle shell might have been another source of discrepancy
between theory and experiment.
A more precise estimation of the magnetic susceptibility of

the suspensions requires the use of numerical methods. With
this aim, we solved the magnetostatics problem by finite
element method simulations (FEMM software21) for our two
structured suspensions: chains of (i) solid-nickel particles and
(ii) nickel-coated particles. For this purpose, we considered an
axisymmetric periodic cell of two particles (inset of Figure 2).
Periodic boundary conditions were applied to both the upper
and lower walls, and the internal magnetic field was imposed at
the lateral (right) wall of the cell. The cell dimensions were
adjusted so that the volume fractions of the different materials
in the cells were the same as in the real suspensions (inset of
Figure 2). The results of the simulation are shown in Figure 2.
The simulated results of the suspension magnetic suscepti-

bilities are in good qualitative agreement with the experimental
and theoretical ones, especially for the suspension of solid
particles. Actually, in spite of some quantitative differences, the
obtained trends were the same: the magnetic susceptibility was
higher when the nickel phase was distributed in a thin spherical
shell rather than in the case of a solid sphere (Figure 2). The
discrepancies with experiments are likely due to the real particle
structures being different from the single-chain structures
supposed here.16

Figure 2. Results of theoretical calculations and FEMM simulation of
the magnetic susceptibility for both suspensions. Experimental data are
also plotted for comparison. The inset shows the schematic unit cells
used in the simulation. Despite some quantitative differences, theory
and simulation well reproduced the experimental trends: the magnetic
susceptibility was higher for the nickel-coated suspension.
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At this point, it is worth mentioning that, as inferred from eq
8, the magnetic response of the nickel-coated suspension could
be optimized by acting on parameter p (i.e., by acting on the
thickness of the magnetic shell). Actually, parameter p could
ideally range from p = 0 (i.e., solid nickel spheres) to p = 1 −
(φmag/φm), where φm is the maximum-packing volume fraction.
In this range, the magnetic susceptibility of the nickel-coated
suspension (eq 8) is a monotonic increasing function of
parameter p, as shown in Figure 3. Such a result made evident
that there is a progressive enhancement of the magnetic
response as the magnetic shell becomes thinner.

The enhancement of the magnetizability of a suspension
should lead to a better technological performance because of an
improved response to external magnetic fields. As an example,
we discuss here the effect on the rheological properties of the
suspensions upon magnetic-field application. Suspensions of
magnetic micrometer-sized particles behave as field-responsive
materials because they undergo changes in their rheological
properties upon application of external fields. More specifically,
in the absence of magnetic fields, they usually follow Newton’s
law of viscosity (i.e., the shear stress,σ, depends linearly on the
shear rate, γ,̇ in the form σ = ηγ,̇ where η is the viscosity).
However, when an external field is applied, their viscosity
strongly increases and a yield stress, σy, appears, below which
the suspension does not flow. These field-induced rheological
changes are due to the formation of magnetic particle structures
in the field direction, which hinder the flow of the suspension.
The formation and strength of the particle structures strongly
depend on the degree of magnetization of the suspension, that
is, on its magnetic susceptibility.16 Actually, theory and
simulation previously indicated the possibility of enhancing
the field-induced yield stress by using hollow magnetic
spheres.25−27 However, no experimental evidence of such
improvement has ever been published to the best of our
knowledge. As a result, we decided to experimentally prove
such a hypothesis by measuring the rheological properties of
the suspensions. The yield stress was estimated by fitting the
obtained rheograms, σ versus γ ̇ graphs, to the Bingham
equation σ = σy + ηγ.̇ To analyze just the effect of the magnetic

field, we calculated the so-called increment of the yield stress
with the magnetic field, Δσy = σy(H) − σy(0) and plotted it
against the external magnetic field, H, in Figure 4. Note that

nearly identical results were obtained when plotting it as a
function of the internal magnetic field, not shown here for
brevity, given the weak magnetizability of both suspensions
(i.e., χsusp ≪1 in both cases).14,28

A comparison between the Δσy versus H curves for both
suspensions revealed that although they were similar in shape
there were big quantitative differences between them (Figure
4). Both suspensions exhibited an increase of Δσy with H as a
result of the strengthening of the field-induced particle chains
with the field. However, Δσy and its increase with H were much
higher for the nickel-coated sample as a result of its stronger
magnetization and an expected higher number of particle
structures. Actually, it was almost six times higher at the highest
magnetic field (Figure 4). Such a trend was maintained at
higher temperatures, although a decrease of the yield stress with
temperature was obtained (see Figure S1 of the Supporting
Information), in agreement with previous works.29−31

The increase of the magnetic susceptibility for magnetically
coated particles made evident that it is possible to enhance the
technological performance of magnetic-field-responsive materi-
als by changing just the distribution of the magnetic material in
the dispersed particles. Hollow magnetic spheres are less dense
than solid ones, which additionally reduces particle settling in
suspensions, an important drawback that is usually present for
these materials (see Figure S2 of the Supporting Information in
which a good stability over time can be observed for the nickel-
coated sample, in contrast with the rapid sedimentation shown
by the solid nickel one).

4. CONCLUSIONS
We have proved experimentally, theoretically, and by finite
element method simulation that the spatial distribution of
magnetic material in colloidal particles affects the magnetic
susceptibility of suspensions consisting of them. A suspension
of nickel-coated hollow ceramic spheres (optimized system)
gave rise to higher values of the initial susceptibility than a
suspension of solid spheres (nonoptimized system) with the
same total volume fraction of nickel. In addition, we have

Figure 3. Magnetic susceptibility of the nickel-coated suspension as a
function of parameter p = (rc/rs)

3 in the range from p = 0 (solid nickel
particles) to p = 1 − (φmag/φm) for different values of the magnetic
field strength, H, obtained by means of eq 8. As can be seen, the
susceptibility is a monotonic increasing function of p; therefore, the
thinner the magnetic shells are, the stronger the magnetic response will
be.

Figure 4. Increment of the yield stress as a function of the external
magnetic field strength for both suspensions. This quantity was much
higher for the nickel-coated sample for all of the range of studied fields.
Results were obtained from measurements at 25 °C.
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theoretically shown that for a given amount of magnetic
material the thinner the shell is, the higher the magnetic
susceptibility will be. Such an increase of susceptibility also
improved the field-induced yield stress of the suspension, a
parameter of practical interest in field-responsive fluids. Future
work should reveal similar enhancements for other related
applications. In addition, there is still work to be done to
improve the technological performance of this kind of particle,
with the goal being the manufacture of cost-competitive, low-
density, field-responsive materials presenting an equivalent
magnetic response and a large reduction in sedimentation and
aggregation, which are always a concern for the applications of
these materials.
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